Extensions 1→N→G→Q→1 with N=C22xQ8 and Q=C2

Direct product G=NxQ with N=C22xQ8 and Q=C2
dρLabelID
Q8xC2364Q8xC2^364,262

Semidirect products G=N:Q with N=C22xQ8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xQ8):1C2 = C23:Q8φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8):1C264,74
(C22xQ8):2C2 = Q8:D4φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8):2C264,129
(C22xQ8):3C2 = C2xC22:Q8φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8):3C264,204
(C22xQ8):4C2 = C2xC4.4D4φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8):4C264,207
(C22xQ8):5C2 = C23.38C23φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8):5C264,217
(C22xQ8):6C2 = Q8:5D4φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8):6C264,229
(C22xQ8):7C2 = D4xQ8φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8):7C264,230
(C22xQ8):8C2 = C22xSD16φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8):8C264,251
(C22xQ8):9C2 = C2xC8.C22φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8):9C264,255
(C22xQ8):10C2 = C2x2- 1+4φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8):10C264,265
(C22xQ8):11C2 = C22xC4oD4φ: trivial image32(C2^2xQ8):11C264,263

Non-split extensions G=N.Q with N=C22xQ8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xQ8).1C2 = C23.67C23φ: C2/C1C2 ⊆ Out C22xQ864(C2^2xQ8).1C264,72
(C22xQ8).2C2 = C23.78C23φ: C2/C1C2 ⊆ Out C22xQ864(C2^2xQ8).2C264,76
(C22xQ8).3C2 = C2xC4.10D4φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8).3C264,93
(C22xQ8).4C2 = C2xQ8:C4φ: C2/C1C2 ⊆ Out C22xQ864(C2^2xQ8).4C264,96
(C22xQ8).5C2 = C23.38D4φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8).5C264,100
(C22xQ8).6C2 = C22:Q16φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8).6C264,132
(C22xQ8).7C2 = C23.32C23φ: C2/C1C2 ⊆ Out C22xQ832(C2^2xQ8).7C264,200
(C22xQ8).8C2 = C2xC4:Q8φ: C2/C1C2 ⊆ Out C22xQ864(C2^2xQ8).8C264,212
(C22xQ8).9C2 = C22xQ16φ: C2/C1C2 ⊆ Out C22xQ864(C2^2xQ8).9C264,252
(C22xQ8).10C2 = C2xC4xQ8φ: trivial image64(C2^2xQ8).10C264,197

׿
x
:
Z
F
o
wr
Q
<